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Abstract. In this report, we present our winning solution to the 3D ob-
ject detection of the SSLAD2022 Challenge at ECCV 2022. We propose a
simple yet effective one-stage siamese network to fully leverage the com-
plementary information between multiple temporally adjacent frames.
Besides, we integrate channel-wise and spatial-wise attention into our
backbone network efficiently to obtain discriminative feature represen-
tation. Moreover, we add an IoU prediction head to alleviate the issue
of the inconsistency between classification and localization confidences.
The IoU loss is also employed and optimized jointly with common clas-
sification and regression losses for more precise detection boxes. Our
approach achieves 85.13% mAP and wins first place in the 3D object
detection track.
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1 Introduction

We brief the Self-supervised Learning for Next-Generation Industry-level Au-
tonomous Driving Challenge at ECCV 2022. It introduces ONCE dataset [1]
which consists of 1 million LiDAR scenes and 7 million camera images. To sim-
ulate various real scenarios, the data is collected from different periods, areas,
and weather conditions. Moreover, the dataset provide three unlabeled split with
different amounts of unlabeled data, namely raw small, raw medium, and raw
large, which facilitates many researches on semi- and self-supervised learning for
3D object detection.

2 Methods

We design a one-stage and anchor-free [2–4] 3D point cloud detector. Fig 1
illustrates the overall pipeline of our framework, which consists of three core
parts, namely siamese 3D backbone, BEV feature extractor, and anchor-free
detector heads.
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Fig. 1. Illustration of the overall architecture of our method.

2.1 Siamese 3D Backbone

The siamese 3D backbone consists of two branches which share the same ar-
chitecture but their parameters are not shared. Each branch includes a point
cloud voxelization module and a 3D feature extractor. The point clouds of the
current frame and its previous frame are fed into the two branches respectively,
and then their features are concatenated to get the fusion feature. In this way,
the complementary information between temporally adjacent frames are effec-
tively combined. We empirically find this simple multi-frame fusion mechanism
is valueable for small objects like pedestrians.

In the following, we present more details about the 3D feature extractor.
We employ a ResNet-like [5] 3D backbone model which consists of five stages,
as is illustrated in Figure 2 (a). The first four stages are stacked with a single
(submanifold) sparse convolution layer [6] (SpConv for short) and {2, 2, 2, 2}
residual blocks equipped with SE operation [7], respectively. Each residual block
involves two groups of SpConv-BatchNorm-ReLU layers. Besides, we append a
SE layer after the second group, which adaptively enhances informative features
while suppress those less related to the detection task by conducting channel-wise
attention operation. The stride for the first SpConv layer inside stage 1 (resp.,
stage 2-4) is set to 1 (resp., 2) along X, Y , and Z axis. For the last stage, we use
only one SpConv layer with stride 1 (resp., stride 2) for X and Y axis (resp., Z
axis). In this way, the height information is compressed for efficiency with minor
losses of height information. The 3D feature extractor downsamples the X and
Y axis by a factor of 8 while 16 for the Z axis. Finally, we flatten the 3D feature
map into 2D BEV representation.

2.2 BEV Feature Extractor

We adopt an hourglass [8] architecture for the BEV feature extractor to make
full use of the context information from different scales. Concretely, our network
consists of two hourglass submodules. Each hourglass submodule is composed of
an encoder and a decoder. The encoder consists of a single convolutional layer
for resolution reduction and 5 SC-Conv modules [9] with bottleneck architec-
ture (SCBottleNeck for short). The SCBottleNeck module effectively enlarges
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Fig. 2. Illustration of the architecture of our 3D feature extractor and BEV feature
extractor. For each layer, we specify the setting of each layer in the format of kernel size-
channels-stride. For SEResidualBlock and SCBottleNeck, we only present its channels,
with the default kernel size and stride setting to 3 and 1, respectively. n× on the left
of blocks denotes that n identical blocks are sequentially stacked.

the receptive field and performs efficient attention operation along both the
channel and spatial dimension. The decoder contains only a single transposed
convolutional layer to recover the resolution. The strides for encoders of these
two submodules are set to 1 and 2, respectively. In other words, all the layers
from the first hourglass submodule undergo the same resolution. For the second
hourglass submodule, its encoder first downsamples the input by a factor of 2
and then the decoder upsamples the input to recover the resolution. We combine
the decoder outputs from these two hourglass submodules in a concatenation
manner. Finally, we use an extra transposed convolutional layer for producing
a denser feature map. In this way, the input BEV feature map with stride 8 is
upsampled to stride 4, which keeps more spatial information and plays a key role
for more precise prediction, especially for small objects, such as a pedestrian.

2.3 Anchor-free Detection Head

There are five annotated categories in the ONCE dataset, namely Car, Bus,
Truck, Pedestrian, and Cyclist. In our design, we merge the first three categories
into a single category called Vehicle. We define two subtasks, the first subtask
is responsible for the prediction of Vehicle and Pedestrian, while the second one
predicts the Cyclist. We investigate multiple different ways of subtask design
and show their inherent complementarity in Section 3.3.

Each subtask consists of a shared convolutional layer and three separate
detection heads, namely classification head, regression head, and IoU prediction
head. The classification head predicts the category of a certain position. The
regression head regresses the offset to the center of the ground truth box, the
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box size, and the heading orientation. The IoU prediction head infers the IoU
between the prediction box and corresponding ground truth, which can be viewed
as a metric for localization confidence. In the NMS process, we combine the
classification confidence and localization confidence in a weighted sum manner
to provide a more reliable measurement for the quality of predicted boxes. In
addition, We use the smooth L1 loss for the IoU prediction head. The IoU score
predicted by our model is just used while doing NMS. We resort bounding boxes
by its IoU-aware category score, which is defined as:

scorenms = (scorecategory)
1−α × (scoreiou)

α (1)

The scorecategory is the original category score, scoreiou is the IoU score
predicted by the IoU-aware head. In our model α is set to 0.65.

2.4 Label Assignment

Multiple positive assignment (one-to-many assignment) is more efficient than
one-to-one assignment, as mentioned in [10–12]. We adopt a simple label assign-
ment strategy similar to FCOS in our method. That is, 9 anchor points closest
to the center of each ground truth are assigned as positives. When an anchor
point is assigned to multiple ground truths, the ground truth whose center is
closest to it is taken as the final target. The 9 anchor points are a positive bag
for each ground truth, while those which are not assigned to any ground truth
are taken as negatives.

To further improve our model’s performance, we propose a method to re-
weight the classification loss of anchor points. We generate a Gaussian distribu-
tion G(µ, σ2) for each ground truth. µ equals the distance between the centers
of anchor points and the ground truth. σ equals 1. The focal loss of negative
anchors is re-weighted by (1 - G), aiming at decreasing the loss of anchors that
are close to the center of ground truths. On the other hand, we also re-weight the
loss of positive anchors. First, we compute the loss of positive anchors (including
classification and localization loss). Second, the loss weight of positive anchors
and the focal loss [13] of our method can be defined as follows (we set β1 to 1
and β2 to 0.5).

Lpos = β1Lcls pos + β2Lreg pos (2)

Wpos = 2× (1− Sigmoid(Lpos)) (3)

Wneg = 1− G(µ, σ2) (4)

Lheat =

{
Lfocal pos ×Wpos if positive

Lfocal neg ×W2
neg else

(5)
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2.5 Loss

For the classification head, we adopt the focal loss [13] for heatmap prediction to
alleviate the issue of foreground/background imbalance. For the regression head,
L1 loss is used for prediction of center offsets (∆x,∆y,∆z), box sizes (l, w, h),
and heading orientation θ. Besides, we employ an IoU loss to jointly optimize
center offsets and box sizes through IoU Metric, which is beneficial to generate
a more precise prediction. The overall optimization goal is

L = λ1Lheat + λ2Lreg + λ3LIoU h (6)

Lreg = Loffset + Lsize + LIoU m (7)

where LIoU h denotes the smooth L1 loss for IoU prediction head while
LIoU m represents the IoU loss for regression.

It is worth noting we adopt an auto-weighted module [14] to dynamically
assign weights (λ1, λ2 and λ3) to different losses. In such a way, we get rid of
time-consuming grid search for the weighting factors. The auto-weighted mod-
ule has a learnable parameter Θ in the shape of n which indicates the assigned
weights for different losses. In our case, n is 3. Note that Θ is jointly optimized
with other model parameters through backpropagation. Besides, we add an ex-
tra regularization term to avoid the too large value of Θ. Hence, the overall
optimization goal can be reformulated as follows:

L = λ1Lcls + λ2Lreg + λ3LIoU h + LΘ (8)

Lθ = log(1 +Θ2) (9)

λi =
1

2Θ2
i

(10)

3 Experiments

3.1 Implementation Details

Data Augmentations. We follow the data augmentation strategies [15, 16]
used in 3D object detection. GT sampling [17] is the most effective augmentation
to improve the model’s performance. We select 14, 5, 4, 5, 13 ground truth
samples for car, bus, truck, pedestrian, and cyclist. They are directly put into
the current frame without extra transforms. We do randomly flipping along the
x-axis and y-axis, global rotation following U

(
−π

4 ,
π
4

)
, global scaling following

U (0.95, 1.05), and global translation along x, y, z-axis following U (−0.2m, 0.2m).
Training Details. We implement our methods based on the official repository
based on ONCE-Benchmark [1]. The point cloud range is limited to [ (-75.2,
75.2), (75.2, 75.2), (-5.0, 3.0) ] respect to x, y, z-axis during training and testing
process. The voxel size along x, y, z-axis is set to [0.1m, 0.1m, 0.2m], and the
max number of voxels is 60000. As for focal loss, the alpha is 0.25 and gamma is
2. AdamW [18] with one-cycle policy [19] is used as optimizer. We set the max
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learning rate to 3× 10−3, division factor to 10, momentum ranges from 0.95 to
0.85, fixed weight decay to 0.01, pct stat to 0.4, grad norm clip to 35. Our model
is trained with 80 epochs on the training set.
Inference Details. We apply the classification score threshold 0.1 and NMS
with an IoU threshold of 0.1 to filter the predict bounding boxes. The max
predict size before NMS is 1500 and the max size after NMS is 100. We raise the
number of the max size before NMS because our method applies one-to-many
assignment like FCOS [2] instead of one-to-one assignment as CenterPoint [20]
does. Instead of sorting bounding boxes by original category score, we combine
the IoU score predicted by our model and the original category score to get a
new score for NMS ranking. IoU-aware score weight α at test time is 0.65 for all
categories.
Test Time Augmentation (TTA). We adopt multiple test-time augmenta-
tions, such as point cloud rotation, global scaling, and flip. The results of different
augmentations are merged by Weighted Boxes Fusion (WBF) [21]. We perform
[0, ±22.5, ±45, ±135, ±157.5, 180] for yaw rotation. Besides original yaw rota-
tion, we add an extra augmentation for each angle of rotation. It includes flip
along the x-axis, y-axis, and along both x and y-axis, scale in [0.95, 0.975, 1.025,
1.05] for global scaling. However, yaw rotation contributes most to boosting the
model’s performance.
Ensemble Method. We apply Weighted Box Fusion (WBF) as our ensemble
method for two purposes, one is to merge the results of TTA, the other is to
merge the results of different models. Especially, we ensemble 10 models to get
our final results, including different ways of subtask designs and their two-frame
versions. We set the box filtering threshold to [0.05, 0.05, 0.25] and the IoU
threshold to [0.7, 0.3, 0.5] for the WBF process. Besides, boxes with scores less
than 0.03 are also discarded.

Baseline IoU Loss Multi-Positive SE Backbone Multi-Frame mAP

✓ 67.4
✓ ✓ 68.5
✓ ✓ ✓ 70.8
✓ ✓ ✓ ✓ 71.6
✓ ✓ ✓ ✓ ✓ 72.4

Table 1. Ablation studies on the ONCE validation dataset. All the model are trained
with the only the ONCE training dataset and evaluated without any test time aug-
mentation.

3.2 Ablation Study

In Table 1, we ablates the effect of different components of our model. As is
shown, IoU loss leads to an improvement of +1.1% mAP. Adopting the multiple
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Subtask Design Car Bus Truck Pedestrian Cyclist mAP mAP †
Default H1 H1 H1 H1 H2 83.34 85.79

Alternative1 H1 H1 H1 H2 H3 84.09 86.40
Alternative2 H1 H1 H1 H2 H1 83.65 85.98
Alternative3 H1 H1 H1 H2 H2 82.50 85.32
Alternative4 H1 H1 H1 H1 H1 82.57 85.39
Alternative5 H1 H2 H3 H4 H5 81.67 -

Table 2. Results of our approach with different subtask designs. Models are trained
on the ONCE trainval split and evaluated on the validation set. H1, H2, H3, H4, H5
denotes different detection heads, while the same letter means they belong to the same
head. † denotes the results with post-procedure.

positive label assignment strategy further yields an improvement of +2.3% and
boosts the mAP to 70.8%. Besides, using residual blocks equipped with SE
Layer brings +0.8% improvement. Multiple frame strategy futher yileds +0.8%
improvement and leads to a mAP of 72.4%. We also investigate the effect of
different ways of subtask design, which is shown in Table 2.

3.3 Post Processing Procedure

We employ TTA and WBF as the post processing procedure to further enhance
the performance of our model. As is shown in Table 2, TTA+WBF consistently
yields a remarkable improvement of around +2.5% mAP for multiple differ-
ent models. Besides, we observe that ensembling the results of different models
through TTA+WBF leads to even more significant improvement. Ensembling
all models but the last one in Table 2 and their 2-frame versions results in a
mAP of 88.2% on the validation split. We notice that when the gap between
the prediction and the ground truth of orientations exceeds a certain range, the
evaluation metric will ignore the wrong heading predictions, which leads to a
much better metric. Ignoring wrong heading predictions by adding 4π to the
orientation prediction may result in an improvement of 3%-4% mAP. Besides,
we enlarge the predicted pedestrian boxes by 5% and achieve slightly better per-
formance for pedestrian, since we empirically find that these boxes tend to be
smaller than their ground truth.

3.4 Attempts on Semi-supervised Learning

We pay much effort to investigate the semi-supervised learning framework for
3D object detection. Our method can be categorized into a popular stream of
the pseudo-label-based framework. Concretely, our approach follows a two-stage
pipeline: 1) first training on the labeled data; 2) then fine-tuning with both la-
beled and unlabeled data. Our framework consists of a student and a teacher
network, both of which are initialized with the same well-trained weights on the
labeled data. The student is optimized with ground truth of labeled data and
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pseudo labels produced by the teacher for the unlabeled data through the same
optimization goal as stated in Sec. 2.5. While the teacher is updated by expo-
nential moving average (EMA) to absorb up-to-date weights from the student.

However, limited by the performance of the teacher model, many foreground
objects may be misclassified as background when producing the pseudo labels.
Simply taking all the positions on the heatmap with no foreground objects pre-
dicted as negative will amplify the wrong prediction and bias the fine-tuning
process. To alleviate this issue, we propose a soft-weighted strategy to dynami-
cally assign weights to negative samples with the guidance of the classification
confidence Scls provided by the teacher. Concretely, we use 1 − Scls to weigh
each negative sample for the unlabeled data. In this way, positions with higher
classification confidence will be weakly optimized to be negative samples and
vice versa.

In the fine-tuning phase, we set the ratio of labeled and unlabeled data
to 1:4 for each minibatch. We finetune our model for 25 epochs on the raw
small unlabeled data split. Other training details are mostly the same with the
supervised setting as stated in Sec. 3.1 except that we use a smaller learning rate
of 1e-4. Boxes with a classification score larger than 0.4 are taken as foreground
objects and used as pseudo labels. Our semi-supervised framework yields an
improvement of around +1.7% mAP when finetuned on models trained on the
train split. However, we also observe that the gain is marginal when finetuning
on models trained with the trainval split. Hence, the semi-supervised method is
not adopted in our final submission.

Besides the online generation of pseudo labels as mentioned above, we also try
a offline pseudo label generation method. In more detail, we save the predicted
boxes of unlabeld data on the disk offline, using a model well trained on the
train set. We adopt the test time augmentation (TTA) to obtain more precise
pseudo labels. We treat the pseudo labels as the ground truth of unlabeled data
and then finetune our model with both the labeled data and unlabeled data,
leading to slightly better performance than the counterpart of online pseudo
label generation.

4 Conclusion

In this report, we propose a simple one-stage detector with a siamese 3D back-
bone network to make full use of the complementary information between adja-
cent frames. Besides, we design a semi-supervised learning framework to leverage
the large-scale unlabeled data. We hope our work could inspire more researches
on the large-scale ONCE Dataset in the future.
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