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CBCenterDet: 2nd Place Solution to the 3D
Object Detection of the SSLAD2022 Challenge

Weiping Xiao, Yiqiang Wu, Jiantao Gao, Xiaomao Li

The Research Institute of Unmanned Surface Vehicle (USV) Engineering,
Shanghai University

Abstract. In this report, we present our 2nd place solution for the
ECCV 2022 Workshop SSLAD Track 2 - 3D Object Detection. We focus
on the class imbalance problem and classification-localization misalign-
ment problem. To solve these problems, we implement adaptive object
augmentation in data pre-processing and incorporate the IoU branch in
the detection head of the CenterPoint 3D detection framework, respec-
tively. In addition, several improvements are achieved for the feature
extraction network and post-processing techniques are adopted to boost
the model accuracy. Our final model achieves 79.7 mAP on the ONCE
3D object detection test set.

1 Introduction

The SSLAD 3D Object Detection Challenge at ECCV 2022 is a 3D object de-
tection task for autonomous driving. A large-scale dataset named ONCE (One
millioN sCenEs) [5] for 3D object detection in the autonomous driving scenario
is provided. The ONCE dataset consists of one million LiDAR scenes and seven
million corresponding camera images, which are collected across a range of dif-
ferent areas, periods, and weather conditions. The 5K, 3K, and 8K scenes in the
ONCE dataset are annotated for training, validation, and testing respectively.
The remaining data in the ONCE dataset is not annotated and can be used for
semi- and self-supervised learning for 3D object detection.

2 Method

In this section, we present the details of our simple yet effective 3D object de-
tector. As shown in Fig. 1, our detector is composed of four parts, namely data
pre-processing, feature encoding network, detection head, and post-processing.

2.1 Data Pre-processing

Point Cloud Voxelization: The input point cloud is first converted into voxel
presentation with predefined voxel size across the x, y and z-axes. The voxel
feature is defined as the mean feature of the points belonging to the same voxel.
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Point Cloud

Data Pre-processing

Feature Encoding Network

3D Encoder

RseNet-like

2D Encoder

SSFA+SC-Conv

Detection Head

Centerhead

IoU Branch

Shared 
Center Head

Post-processing

Model 
Ensemble

WBF

TTA

Output

AOA

Data Sample

Fig. 1. Illustration of the overall architecture of our method, which consists of
four parts: data pre-processing, feature encoding network, detection head, and post-
processing.

After that, we obtain a 3D voxel feature representation as the input for the
following 3D feature extractor.
Data Sampling and Object Augmentation: Based on the statistical analysis
of data, we found that there is a class imbalance problem in the ONCE dataset.
In particular, the number of vehicles significantly exceeds the number of pedes-
trians and cyclists. To alleviate this problem, we adjusted the sample number
of pedestrians and cyclists in each scene. Besides, we adopt Adaptive Object
Augmentation (AOA) [9] to augment pedestrians and cyclists. Specifically, AOA
utilizes the vertical distribution characteristics (VDCs) of point clouds to search
for suitable ground regions to paste the virtual instances for augmentation. Dif-
ferent from existing data augmentation methods [10], AOA can avoid collision
conflicts occurring in new scenarios, and will not place objects into occluded
areas.

2.2 Feature Encoding Network

3D Feature Encoder: 3D feature encoder is designed to hierarchically extract
informative semantic feature representations from voxel inputs. Based on the
classic 2D object detector backbone ResNet [2], we design a ResNet-like 3D
feature encoder. As illustrated in Fig. 2, the 3D feature encoder consists of four
stages and each stage is stacked with two residual blocks. Each convolutional
layer in the residual block is replaced by the SubMConv layer [1], which is then
followed by a batch normalization (BN) and rectified linear unit (ReLU).
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Fig. 2. Illustration of the architecture of our 3D feature extractor.
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2D Feature Encoder: After extracting 3D feature maps from voxel inputs by
the 3D feature encoder, we flatten them into the Bird’s-Eye-View (BEV) as the
input of the 2D feature encoder. As illustrated in Fig. 3, we adopt the Spatial-
Semantic Feature Aggregation (SSFA) paradigm proposed by CIA-SSD [11] to
adaptively fuse high-level abstract semantic features and low-level spatial fea-
tures of the BEV map. Furthermore, SCBottleNeck [4] is also adopted in the 2D
feature encoder for feature enhancement.
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Fig. 3. Illustration of the architecture of our 2D feature extractor. Conv stands for
convolutional layer and TransConv stands for transposed convolutional layer. The for-
mat of the layer setting follows kernel size-channels-{strides}, i.e. k-C-{s}.

2.3 Detection Head

The traditional detection head in 3D object detectors usually regards the clas-
sification scores as the final prediction output. However, the classification scores
lack the localization information of the regressed bounding box. To alleviate the
misalignment, we follow the AFDetV2 [3] to adopt an IoU prediction branch
for the incorporation of IoU information into classification confidence scores as
Equation 1. Furthermore, we shared the detection head for all classes to improve
the performance.

f = score1−α × iouα (1)

where score is denoted as the classification scores while iou is the predicted IoU.
The α represents the hyper-parameter from the interval [0,1] that controls the
contributions from the classification scores and predicted IoU.

2.4 Post-processing

In the inference phase, we adopt the Test Time Augmentation (TTA), Weighted
Boxes Fusion (WBF) [8], and Model Ensemble for the boost of the model accu-
racy.
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Test Time Augmentation: The multiple test time augmentation is conducted
on the inference stage, such as global rotation, scaling, and flip. We perform the
global rotation for the point cloud in the range [0, π/8, π, 7π/8, 3π/4], and
global flip along both the x and y-axes. Also, we scale the point cloud in [0.95,
0.975, 1.025, 1.05].
Weighted Boxes Fusion: After using the TTA to generate the results of differ-
ent augmentation, the Weighted Boxes Fusion (WBF) is adopted to merge them
for better model accuracy. We set the box filtering IoU threshold to [0.7, 0.7, 0.7,
0.3, 0.5] and the score threshold to [0.3, 0.25, 0.25, 0.25, 0.35] for the different
categories [’Car’, ’Bus’, ’Truck’, ’Pedestrian’, ’Cyclist’] in the WBF process.
Model Ensemble: Furthermore, we also apply Weighted Box Fusion (WBF) to
merge the results of different models. Here we ensemble 5 models to get our final
results, including different ways of sub-task designs and their two-stage versions.
The box filtering threshold and the IoU threshold are set the same as those for
TTA.

3 Experiments

3.1 Implementation Details

Training Details: We implement our method based on the official repository
of the ONCE-Benchmark [5]. The scene ranges are limited to [−75.2m, 75.2m]
for the x and y-axes, while [−5.0m, 3.0m] for the z-axis. The voxel size in the
data pre-processing is set as [0.1m, 0.1m, 0.2m] and the max number of the
voxels in one scene is limited to 60000. The object augmentation range in AOA
is set as [0, 2π] and the copy-paste times of each augmentation instance is 16.
In addition to AOA, we employ traditional data augmentation methods as done
in [10, 7, 6], including randomly flipping along the x-axis, globally scaling with a
scaling factor randomly chosen from the interval [0.95,1.05], and globally rotating
around the z-axis with an angle randomly sampled from the interval [−π/4,π/4].
We use the Adam optimizer as our optimizer. The batch size is set to 4 for the
total 100 epochs. The initial learning rate is set as 0.003 and decreases by 1%
after every epoch.
Inference Details: The classification score threshold and the NMS IoU thresh-
old are both set as 0.1 to filter the predicted bounding boxes. The hyper-
parameter α in the detection head at test time is 0.55 for all categories and
the max predict size from the detection head is set as 500. For our final submis-
sion, we train our model on both the training and validation splits.

3.2 Ablation Study

We conduct an ablation study of our models on the val set. As shown in Ta-
ble 1, we ablate the improvement of our models based on CenterPoint. Data
Sampling and Object Augmentation strategies bring a 1.27 mAP improvement.
The Shared Center Head further leads to a significant improvement of 5.66 mAP.
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DSOA SCH EFEN IoUDH Vehicle Pedestrian Cyclist mAP

65.70 48.72 63.64 59.35
✓ 66.93 49.76 65.17 60.62
✓ ✓ 78.02 52.52 68.32 66.28
✓ ✓ ✓ 79.65 54.63 71.25 68.51
✓ ✓ ✓ ✓ 80.65 56.73 72.75 70.04

Table 1. Ablation studies for 3D object detection on ONCE val set. We ablate each
component of our submission compared to our baseline model CenterPoint. SCH,
DSOA, EFEN, and IoUDH refer to the Shared Center Head, Data Sampling and Ob-
ject Augmentation, Enhanced Feature Encoding Network, and IoU-based Detect Head,
respectively.

The Enhanced Feature Encoding Network yields an improvement of 2.23 mAP.
Besides, Adopting the IoU branch in Detect Head brings a 1.53 mAP improve-
ment. For the post-processing techniques, we validate their effect on several
baseline models. As shown in Table 2, the post-processing techniques TTA &
WBF can significantly boost the model accuracy.

Method Vehicle Pedestrian Cyclist mAP

Ours 87.59 72.17 78.38 79.38
+ TTA & WBF 89.20 77.42 79.75 82.12

Ours (two-stage) 89.65 70.79 77.43 79.29
+ TTA & WBF 91.78 75.54 81.30 82.87

Table 2. Effect of the post-processing on our proposed models. TTA and WBF refer
to the Test Time Augmentation and Weighted Boxes Fusion, respectively.

3.3 Main Results

Table 3 shows the ECCV 2022 Workshop SSLAD Track 2 - 3D Object Detection
Challenge Leaderboard. Our submission ranked second among all entries.

4 Conclusion

In this report, we present a class-balanced 3D object detector and prove its
effectiveness on the ONCE dataset. The proposed detector consists of data pre-
processing, feature encoding network, detection head, and post-processing. To
alleviate the class imbalance problem, we achieve improvements in each module
of the proposed detection model. Based on the improved model, we win the
second place in the 3D object detection of the SSLAD2022 Challenge at ECCV
2022.
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Method mAP Vehicle Pedestrian Cyclist

galvatron 85.13 88.38 84.48 82.52
SHULab 79.70 86.64 74.71 77.75
lovesnowbest 78.32 80.92 76.41 77.64

Table 3. State-of-the-art comparisons for 3D object detection on the ONCE leader-
board of the SSLAD2022 Challenge at ECCV 2022. We show the mean average preci-
sion weighted by heading accuracy (mAP).
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