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Abstract. In this report, we present our solution to the 3D object detec-
tion of the SSLAD2022 Challenge at ECCV 2022 Workshop. We propose
a simple semi-supervised 3D object detection framework, which conducts
dense supervision on the student model. Instead of generating sparse
pesudo-label for student imitation, we leverage the dense teacher predic-
tions for more efficient semi-supervised learning. Our baseline is a simple
CenterPoint with several simple modifications according to the last year
winning solutions. The final submission is a single model with test-time
augmentation and achieves 78.32 % mAP, ranking the 3rd place in the
3D object detection track.

1 Introduction

We first introduce self-supervised learning for next-generation industry-level au-
tonomous driving challenge 3D Object Detection track, at ECCV 2022 Work-
shop. It introduce ONCE dataset [8], one of the currently largest autonomous
driving dataset for 3D object detection, which consists of 1 million LiDAR scenes
and 7 million camera images. The dataset provide three unlabeled splits with dif-
ferent amount of data, to facilitate the researches to conduct more experiments
on semi- and self-supervised learning for 3D object detection.

2 Methods

In this section, we first describe the detailed implementation of our approach
and then introduce some attempts that not work in our work.

? Corresponding Author.
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2.1 Baseline 3D Detector

We first reimplement CenterPoint based on MMDetection framework. In order
to achieve better performance, we adopt dynamic voxelization, DCN separate
head, and stronger data augmentation. Besides, we replace the RPN head with
SCFA module and introduce IoU prediction branch for more accurate bounding
box prediction.

Dynamic CenterPoint. Following the official benchmark, we choose Cen-
terPoint [9] as our baseline model. We use the voxel-version of the CenterPoint. It
consists of the point voxelization, 3D feature extraction, and center-based object
prediction network. Considering that point feature extraction is of great impor-
tance in the object localization phase, we replace the original hard voxelization
into dynamic voxelization proposed in [12]. This strategy not only improves the
utility of the GPU memory but also enhance the detection performance. De-
formable convolution [3] is an effective approach in enlarging dynamic receptive
field of the network and greatly improves the performance. Therefore, following
the practice in [2], we adopt deformable convolution for separate classification
and regression branches in our model.

Data Augmentation. Data augmentation is a crucial step in achieving
competitive detection performance. Therefore, we carefully tune the augmenta-
tion hyper-parameters. Firstly, we apply horizontal and vertical flip on the point
clouds with a rate of 0.5. Secondly, we try more challenging augmentations like
global rotation with a range of [−π/4 − π/4] and randomly add offsets to the
whole point clouds ranges from [−0.2− 0.2] m. We also rescale the point clouds
with a ratio of [0.95 − 1.05]. We generate an annotation database containing
labels and associated point clouds. During training, we randomly select 1, 4, 3,
2, and 2 ground truth samples for car, bus, truck, pedestrian, and cyclist and
place them in the current frame, which is denoted as GT-AUG.

Backbone & Neck. We follow the implementation in the last year winning
solution, where we adopt the Spatial Semantic Feature Aggregation (SSFA) mod-
ule introduced in CIA-SSD [11].

IoU Head. Classification score are proven to be inconsistent with the lo-
calization accuracy [5]. In this case, obtaining a suitable score for the detected
bounding boxes is important. Following the practice in [4], we introduce an ad-
ditional IoU regression branch, in parallel with the classification and regression
heads. The target is set to the IoU value between the model prediction and the
matched GT. And we use two MLP layers and a sigmoid function to construct
the IoU prediction branch.

Test-Time Augmentation. In most cases, test-time augmentation (TTA)
provides the largest performance gain without taking any extra efforts. In this
work, we simply adopt vertical and horizontal flip for TTA. Besides, we find that
simply averaging prediction maps before re-flip model predictions yields better
performance compared to vanilla TTA.
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2.2 Semi-Supervised 3D Detection

In this section, we present our framework on semi-supervised 3D object detec-
tion. Following the common practice, our framework is consists of two branches:
a teacher model with weak data augmentation, and a student model with strong
augmentation. Then, we conduct consistency loss on their predictions, following
[6]. Specifically, we perform such consistency regularization on the predictions
from the teacher model and student model.

Pseodo Label Generation We first instantiate a fully-supervised model as
teacher, which denotes as T , and then perform weak augmentation, such as
random flip horizontally and vertically. After that, we feed the teacher model
with the augmented point clouds P to obtain the model predictions. Due to the
characristic of the one-stage object detectors, we can get a dense H ×W size
predictions, where each pixel corresponds to one possible instance.

Consistency Loss In order to avoid tuning delicate NMS threshold and boxes
score threshold, we directly let the student mimic the dense predictions by the
teacher model. Formally, let PT = (CT , BT ) denotes the predictions from the
teacher model, CT and BT are the predictions in the classification and regression
branches, respectively. The same annotations are applied for the student as PS .
Therefore, we can get the consistency loss with

L =
1
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Considering that not all predictions are of the same quality, we introduce an
attention mask with the guidance from the ground truths’ position. Hence the
final regularization loss is represented as:
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2.3 Attempts that not Works

Since ONCE dataset also provides paired imagery data, we give an attempt on
multi-modal 3D object detection with paired 2D and 3D data. We first followed
the practice in MoCa [10] and reimplement AutoAlignV2 [1] for 2D & 3D feature
fusion, where the image backbone is initialized from the pretrained checkpoint
followed in [7]. However, the results are far from the satisfactory, actually lower
than its vanilla 3D version.
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3 Experiments

3.1 Implementation Details

We implement our methods based on the official repository MMDetection3D.
The point cloud range is limited to [(-75.2, 75.2), (75.2, 75.2), (-5.0, 3.0)] respect
to x, y, z-axis during training and testing process. The voxel size along x, y, z-axis
is set to [0.2m, 0.2m, 0.2m]. AdamW with one-cycle policy is used as optimizer.
We set the max learning rate to 3 × 10−3, division factor to 10, momentum
ranges from 0.95 to 0.85, fixed weight decay to 0.01, pct stat to 0.4, grad norm
clip to 35. Our model is trained with 80 epochs on the training set.

3.2 Detailed Ablations

In this section, we provide detailed ablations on the effect of each component in
our model. Our baseline model starts from 63.4 mAP, which follows the official
practice in ONCE BENCHMARK. When we apply the dynamic voxelization,
the performance raised 0.4 mAP. Then, we carefully tune the augmentation
parameters and the baseline improves to 67.4 mAP. Then, we follow the last
year winning solution, replacing the backbone and the neck to SSFA module,
and the performance improves 1.5 mAP. To get better score representation, we
introduce IoU predictions and get another 1.3 mAP enhancement. TTA yields
the largest improvement, which raises from 70.3 to 76.6 mAP. Finally, we employ
the proposed SSOD framework and reach 78.7 mAP on the validation subset.

Table 1. Effect of each component in our framework. Results are reported on ONCE
validation set with CenterPoint.

Dynamic Voxelization Train Aug SSFA IoU Pred TTA SSOD mAP

63.42
X 63.79
X X 67.40
X X X 68.92
X X X X 70.26
X X X X X 76.56
X X X X X X 78.76

4 Conclusion

In this report, we present a competitve 3D detector and win 3rd place on the 3D
object detection of the SSLAD2022 Challenge at ECCV 2022. We hope our work
could inspire more researches on the large-scale ONCE Dataset in the future.
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